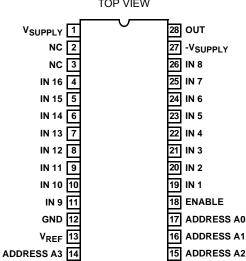
## HS-0546RH, HS-0547RH



#### Data Sheet

### March 13, 2006

### FN3544.4


### Radiation Hardened Single 16/Differential 8 Channel CMOS Analog Multiplexers with Active Overvoltage Protection

The HS-0546RH and HS-0547RH are radiation hardened analog multiplexers with Active Overvoltage Protection and guaranteed rON matching. Analog input levels may greatly exceed either power supply without damaging the device or disturbing the signal path of other channels. Active protection circuitry assures that signal fidelity is maintained even under fault conditions that would destroy other multiplexers. Analog inputs can withstand constant 70V peak-to-peak levels with ±15V supplies and digital inputs will sustain continuous faults up to 4V greater than either supply. In addition, signal sources are protected from short circuiting should multiplexer supply loss occur: each input presents  $1k\Omega$  of resistance under this condition. These features make the HS-0546RH and HS-0547RH ideal for use in systems where the analog inputs originate from external equipment or separately powered circuitry. Both devices are fabricated with 44V dielectrically isolated CMOS technology. The HS-0546 is a 16 channel device and the HS-0547 is an 8 channel differential version. If input overvoltage protection is not needed, the HS-0506 and HS-0507 multiplexers are recommended.

Specifications for Rad Hard QML devices are controlled by the Defense Supply Center in Columbus (DSCC). The SMD numbers listed here must be used when ordering.

Detailed Electrical Specifications for these devices are contained in SMD 5962-95693. A "hot-link" is provided on our homepage for downloading. http://www.intersil.com

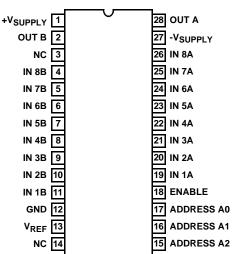
### Pinouts



#### HS-0546RH GDIP1-T28 (CERDIP) OR CDIP2-T28 (SBDIP) TOP VIEW

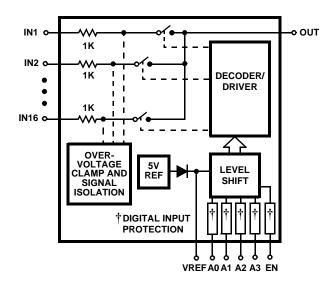
### Features

- Electrically Screened to SMD # 5962-95693
- QML Qualified per MIL-PRF-38535 Requirements
- Gamma Dose ...... 1 x 10<sup>4</sup>RAD(Si)
- No Latch-Up
- No Channel Interaction During Overvoltage
- Guaranteed r<sub>ON</sub> Matching
- Maximum Power Supply ......44V
- Break-Before-Make Switch
- Analog Signal Range.....±15V
- Access Time...... 1.0μs


### Applications

- Data Acquisition Systems
- Control Systems
- Telemetry

### **Ordering Information**


| ORDERING<br>NUMBER | INTERNAL<br>MKT. NUMBER | PART<br>MARKING   | TEMP.<br>RANGE<br>(°C) |
|--------------------|-------------------------|-------------------|------------------------|
| 5962D9569301V9A    | HS0-0546RH-Q            | Q-5962D9569301V9A | 25                     |
| 5962D9569301VXC    | HS1B-0546RH-Q           | Q-5962D9569301VXC | -55 to<br>125          |
| 5962D9569302V9A    | HS0-0547RH-Q            | Q-5962D9569302V9A | 25                     |
| 5962D9569302VXC    | HS1B-0547RH-Q           | Q-5962D9569302VXC | -55 to<br>125          |

#### HS-0547RH GDIP1-T28 (CERDIP) OR CDIP2-T28 (SBDIP) TOP VIEW



### **Functional Diagrams**

HS-0546RH



#### IN1A o $\sim$ • OUT A I 1K • н IN8A o $\sim$ ήĒ 1K I $\mathbf{1}^{\mathbf{1}}$ н IN1B o -oOUT B 111. L ь. 1K DECODER/ DRIVER Ā , n t IN8B o $\sim$ • 1111 4 ~ OVER-VOLTAGE CLAMP AND SIGNAL ISOLATION 5V REF LEVEL SHIFT + **†DIGITAL INPUT** PROTECTION ۶ Ŷ 9 Ŷ 9

HS-0547RH

#### VREF A0 A1 A2 EN

#### HS-0547RH TRUTH TABLE

| A2 | A1 | A0 | EN | "ON" CHANNEL<br>PAIR |
|----|----|----|----|----------------------|
| х  | Х  | Х  | L  | NONE                 |
| L  | L  | L  | Н  | 1                    |
| L  | L  | Н  | Н  | 2                    |
| L  | Н  | L  | Н  | 3                    |
| L  | Н  | Н  | Н  | 4                    |
| н  | L  | L  | Н  | 5                    |
| н  | L  | Н  | Н  | 6                    |
| Н  | Н  | L  | Н  | 7                    |
| Н  | Н  | Н  | Н  | 8                    |

#### HS-0546RH TRUTH TABLE

Т

| A3 | A2 | A1 | A0 | EN | "ON"<br>CHANNEL |
|----|----|----|----|----|-----------------|
| х  | Х  | Х  | Х  | L  | NONE            |
| L  | L  | L  | L  | н  | 1               |
| L  | L  | L  | Н  | Н  | 2               |
| L  | L  | н  | L  | н  | 3               |
| L  | L  | Н  | Н  | Н  | 4               |
| L  | Н  | L  | L  | Н  | 5               |
| L  | Н  | L  | Н  | Н  | 6               |
| L  | Н  | Н  | L  | Н  | 7               |
| L  | Н  | Н  | Н  | Н  | 8               |
| н  | L  | L  | L  | н  | 9               |
| Н  | L  | L  | Н  | Н  | 10              |
| Н  | L  | Н  | L  | Н  | 11              |
| Н  | L  | Н  | Н  | Н  | 12              |
| Н  | Н  | L  | L  | Н  | 13              |
| Н  | Н  | L  | Н  | Н  | 14              |
| Н  | Н  | Н  | L  | Н  | 15              |
| Н  | Н  | Н  | Н  | Н  | 16              |

2

### Switching Waveforms

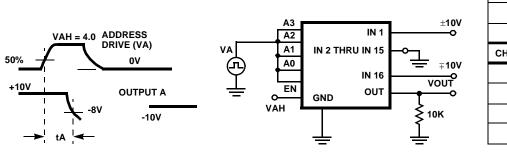
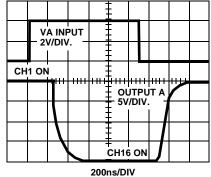
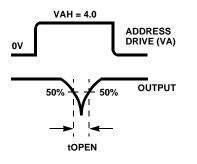
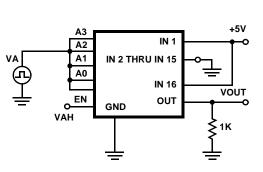
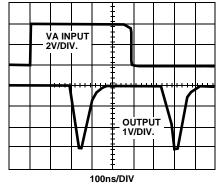






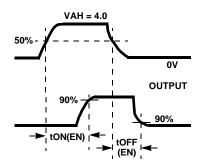

FIGURE 1. ACCESS TIME

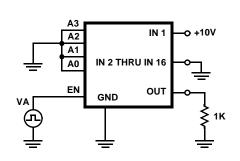









CH1 ON


OUTPUT 4V/DIV.

100ns/DIV

CH1 OFF

FIGURE 2. BREAK-BEFORE-MAKE DELAY (tOPEN)







### Schematic Diagrams

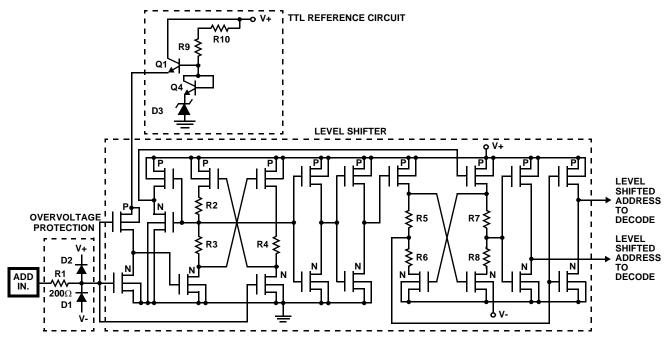



FIGURE 4. ADDRESS INPUT BUFFER AND LEVEL SHIFTER

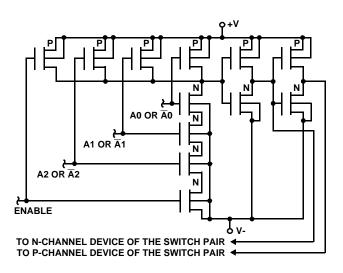
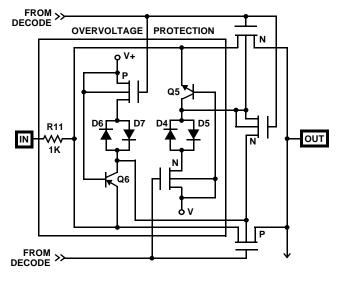
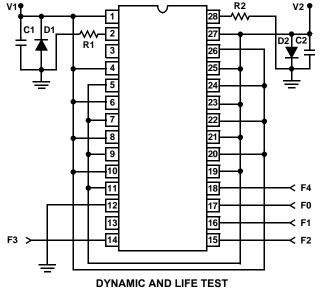
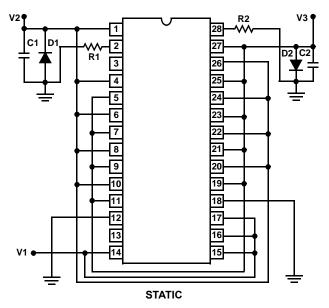


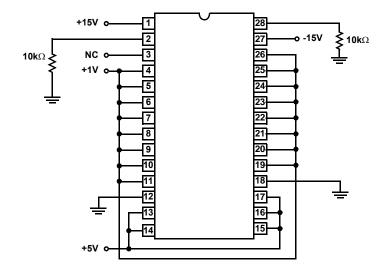

FIGURE 5. ADDRESS DECODER



FIGURE 6. MULTIPLEX SWITCH

### Burn-In/Life Test Circuits




#### NOTES:

- 1. The Dynamic Test Circuit is utilized for all life testing.
- 2. V1 = +15V minimum, +16V maximum.
- 3. V2 = -15V maximum, -16V minimum.
- 4. R1, R2 =  $10k\Omega$ ,  $\pm 5\%$ , 1/4 or 1/2W (per socket).
- 5. C1, C2 =  $0.01\mu$ F minimum (per socket) or  $0.1\mu$ F minimum (per row).
- 6. D1, D2 = 1N4002 or equivalent (per board).
- 7. F0 = 100kHz, 10%; F1 = F0/2; F2 = F1/2; F3 = F2/2; F4 = F3/2 40% - 60% duty cycle; VIL = 0.8V maximum; VIH = 4.0V minimum.



NOTES:

- 8. V1 = +5V minimum, +6V maximum.
- 9. V2 = +15V minimum, +16V maximum.
- 10. V3 = -15V maximum, -16V minimum.
- 11. R1, R2 =  $10k\Omega$ ,  $\pm 5\%$ , 1/4 or 1/2W (per socket).
- 12. C1, C2 =  $0.01\mu$ F minimum (per socket) or  $0.1\mu$ F minimum (per row).
- 13. D1, D2 = 1N4002 or equivalent (per board).



### Irradiation Circuit

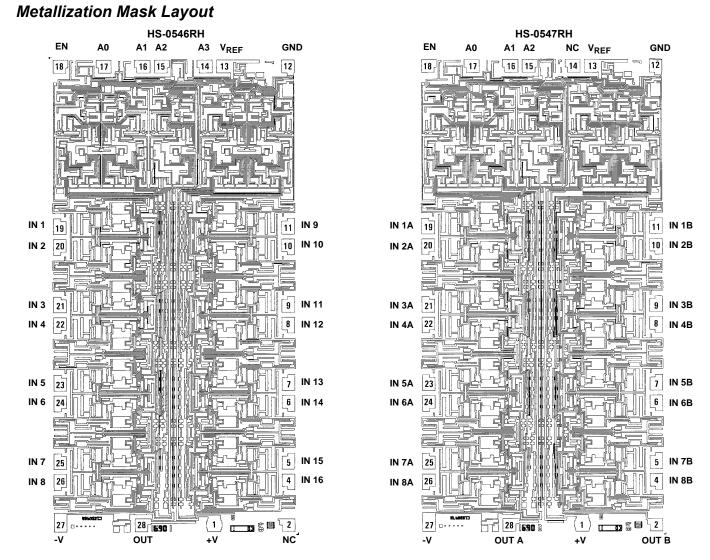
### Die Characteristics

### DIE DIMENSIONS:

83.9 mils x 159 mils x 19 mils

### INTERFACE MATERIALS:

Glassivation:


Type: Nitride Thickness: 7kÅ ±0.7kÅ

#### **Top Metallization:**

Type: Al Thickness: 16kÅ ±2kÅ

#### Substrate:

CMOS, DI



All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems. Intersil Corporation's quality certifications can be viewed at www.intersil.com/design/quality

Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see www.intersil.com

6 intersil

Substrate Potential:

Unbiased (DI)

#### ADDITIONAL INFORMATION:

# Worst Case Current Density: $1.4 \times 10^5 \text{ A/cm}^2$

Transistor Count:

HS-0546 - 485 HS-0547 - 485